
IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 1, January 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4111 42

Parallel Stream Based Processing Model for

WS-Security

Nidhi Arora
1
, Savita Kolhe

2
, Sanjay Tanwani

3

Assistant Professor, Department of Computer Science, M.B. Khalsa College, Indore, India
1

Senior Scientist (Computer Applications), ICAR-Directorate of Soybean Research, Indore, India
2

Professor and Head, School of Computer Science and IT, Devi Ahilya University, Indore, India
3

Abstract: Web Services are widely adapted for integrating heterogeneous information systems in a cost-efficient way.

Simple Object Access Protocol (SOAP) messages are standard way to exchange the information between web services.

Web Services Security (WS-Security) specification is used to secure SOAP messages but adds significant overhead on

SOAP message processing. It increases the size of the message on the wire. Also web services are vulnerable to several

attacks. Processing efficiency and robustness against certain attacks are important issues of web services security.

Schema validation and Hardening are the promising methods to prevent web services from such attacks but have

performance bottleneck. A new Parallel Stream based Security Processing model has been developed in order to

enhance the performance of WS-Security processing and to secure web services from several attacks. A new

methodology is described in the paper in which large SOAP messages are partitioned into schema valid parts.

Individual parts are distributed to parallel instances of security processors running on multiple cores in order to reduce

the processing load. Experiments are conducted on different sizes of SOAP messages, various security patterns and

respective processing time for each is analyzed. Analysis of results reveals that the new parallel stream based security

processing model has shown significant improvement in performance as compared to the serial processing.

Keywords: Web Services, WS-Security, SOAP message processing, XML security.

I. INTRODUCTION

A Web Service uses Simple Object Access Protocol

(SOAP) to exchange messages between two endpoints

over Hyper Text Transfer Protocol (HTTP). It is vital to

secure these SOAP messages when services are sharing

critical or confidential data. SOAP messages can be

altered in the travel by wrapping XML signature elements.

The security attacks like DoS attack, XSW and flooding

attack etc. can spoil the sensitive data. It can crash the

targeted server making the service unavailable [1]. The

current specifications available for web services security

do not consider the problem of availability [2].

WS security protocol stack is used to apply security

to web services and Web Services Security (WS-Security)

is an important component of it. The primary focus of WS-

Security is XML Encryption and XML Signature [3]. WS-

Security processing incurs lots of memory and processing

time [4] [5]. It also provokes new kind of DoS attacks.

Security processing with Schema Validation [5][6] and

Schema Hardening [7] are found to be promising

approaches to prevent DoS, XWA attacks. Parsing SOAP

message with schema validation can detect any invalid or

harmful messages and therefore can be rejected before

giving it to application. This can then protect the system

from attacks like DoS and XWS done unintentionally or

maliciously, without causing error in WS systems [8]. In

most of the cases, schema validation is avoided because it

is a highly time consuming and resource intensive process

[1] [4] [9]. Security processing itself requires complex

computations. The overall processing time goes up

steeply, if schema validation is also to be carried out. Also,

WS-Security adds significant overhead to SOAP-

processing due to the increased size of the message on the

wire [10]. In an environment where users are numerous

and data is huge, it becomes critical for web services to

communicate with optimum performance and efficiency

[11]. Existing security techniques are not able to detect

such attacks effectively and efficiently.

A reliable and efficient security solution is required in

order to protect web services from aforesaid attacks. To

handle these issues, data parallel model for stream based

encryption and decryption processing of web services is

developed. Stream based processing of security [6] [9]

[12] enhances the performance and early detection of

attacks. A new SOAP message partitioning algorithm [14]

is used in order to distribute the load among parallel

running instances of WS-Security processor. Parallel

processing [13] is used in order to enhance the overall

performance of security processing.

The paper describes the design, working and

implementation of the parallel stream based WS-Security

processing model. The performance of new model is

tested for on different sizes of SOAP message and various

security patterns. The results of new model are compared

with respect to the existing serial model. Analysis of

results reveals that new model has improved performance

of encryption significantly over existing serial model.

II. PARALLEL STREAM BASED WS-SECURITY

PROCESSING MODEL

Parallel stream based WS-Security processing model

provides a solution for the problems with evaluation of

large secured XML documents, mainly SOAP messages. It

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 1, January 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4111 43

provides a parallel streaming-based Web Services Security

Gateway as shown in Fig. 1. The Client End Web Services

Security Gateway is used for processing of SOAP

messages containing XML encryption whereas The Server

End Web Services Security Gateway is used for

processing of SOAP messages containing XML

decryption.

Fig1. Secured SOAP message processing using WS

security gateway

The whole processing of XML encryption and decryption

is done with a combination of streaming-based approach

and parallel processing as shown in Fig. 2. The message is

first passed to SOAP message partitioning module [14] in

order to get equal size schema valid partitions. Data

centric SOAP messages generally have repetitive structure

of elements. These repetitive elements are distributed in

different partitions of SOAP message / document. Then

each part is parsed in parallel on multiple cores. Streaming

processing through Simple API for XML (SAX)[15][16] is

used which processes SOAP message step-by-step and

allows interrupting the parsing as soon as an invalid

element is encountered [5]. Validation of incoming

messages by schema validation is used as it is promising

approach for early detection of security violation.

Hardened schema is used here in order to protect SOAP

message from DoS, XWA etc. The security processor is

added to the pipeline of stream based parser. It checks

whether data requires security processing. If requires, then

security processor performs the security related processing

on that data.

Fig.2. Parallel stream based security processing model for

WS-Security

The element name that is to be encrypted is derived from

the security policy before parallel parser instance creation

[14]. Relative positions of elements after partitioning is

also calculated and added as header element of partitions.

If due to partitioning, element is divided and distributed

across partitions, distributed element parts in each

partition are encrypted separately. Encryption algorithm

and parameters are also derived prior to parsing and

encryption/decryption key is buffered.

A. Client End Security Processing

The communication is initiated by client for requesting the

access to a specific WS from the server. At the time of

service request, client sends SOAP request to server. The

client ensures that messages are in the proper syntax and

conform to all security measures required by the server.

Client prepares the SOAP message using client end web

service security gateway by applying encryption on

whole/part of SOAP message. This is done in our model

according to the rules specified in the negotiated security

policy of end points. Message has one or more encrypted

parts. Secured SOAP message is then transferred to

ultimate receiver travelling through none or a number of

intermediaries.

1] Encryption Module:

During parsing, data is transmitted from one parser

module to another parser module via XML events.

Security processor is used as an encryption module at

client end security gateway shown in Fig. 3.

Fig.3. Security processor as encryption module

If an XML element event name is matched with element

name to be encrypted, the encryption module encrypts the

incoming stream. It creates a new series of XML events

for <EncryptedData> element and its sub-elements. These

are then pushed to the next module of the pipeline. First,

all events from <EncryptedData> to <CipherValue> are

sent to the pipeline. Then, incoming events are redirected

to a cipher calculator to calculate the cipher of event

stream until the end tag of the specified element is found.

The cipher calculator then converts cipher texts to

character chunks and then pushes as character events to

the next module. Lastly, the </CipherValue> and

</EncryptedData> are created and pushed to next module

of the pipeline.

After processing of all parts, these partitions are combined

in same order as were in original SOAP message. SOAP

Account [17-19] is updated with two information –(i) total

number of parts and (ii) size of partitions. This is done so

that they can be processed according to the updated

information in SOAP Account. Message is then passed to

the server where server end security gateway will perform

the security processing before it is being used by

application.

B. Server End Security Processing

Server End Web Services Security Gateway receives

SOAP message and divides message into partitions

according to the information in SOAP account. Then it

Event Start

EncryptedData

Event End

EncryptedData

N
e
x
t
p

ip
e
li
n

e
 M

o
d

u
le

Event End

Element e

Event Start

Element e Cipher

Calculator

Encryption ModuleS
c
h

e
m

a
 V

a
li
d

a
to

r

Event Character

Event Character

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 1, January 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4111 44

decrypts message partitions in parallel by creating

instances of stream based parser and assigning them to

separate cores. Decrypted message is then validated

according to schema definition. After validation, message

partitions are post processed to generate the original

message these are then transferred to application. In

general, the validation of SOAP message according to the

schema definition may or may not be done, as it depends

on the negotiated end point configuration. In our model

validation is used as compulsory component of secured

SOAP message parsing.

2] Decryption Module:

Security processor is used as a decryption module at server

end security gateway as shown in Fig. 4.

Fig.4. Security processor as decryption module

The decryption module uses a buffer that collects all

incoming character chunks that occur between the start tag

<CipherValue> and end tag </CipherValue>. When the

decryption module detects the </CipherValue> end tag,

the decryption module decrypts the buffered data.

Decryption module uses a subsequent internal parser

module. It resides virtually within event pipeline module.

Its task is to parse the decrypted output that it retrieves

from the decryption module and generates events

according to decrypted data and passes them to the next

module.

III. RESULTS AND DISCUSSION

Experiments are carried out to evaluate the performance of

the new model and compared with other XML security

models based on stream based processing. Experiments

are performed on single core, dual core, core i5, and i7

systems.

XML containing personnel information as shown in Fig. 5

is used for testing the model.

Format of SOAP XML elements used are as follows:

 Element-centric XML data with large number of

sibling nodes.

 Element-centric deeply nested XML elements.

 Attribute-centric XML data.

Following encryption patterns are used with test data for

encryption of:

 Data enclosed in SOAP element.

 Whole SOAP element.

 Whole SOAP message/document.

 Encrypted element.

The impacts on processing speed are evaluated with

experimental data on three factors:

Fig.5. Part of XML data having repetitive structure

 Size of the text to secure viz. 4MB, 8MB, 16MB,

32MB and 64 MB.

 Proportion of security text to whole XML message.

 Number of partitions (2, 4, 16, 32) used to parse in

parallel.

The results of parallel processing of Encryption and

Decryption with validating parser on i7 are depicted in

Figures 6 and 7 respectively. X-axis shows the number of

threads running in parallel. Numbers of threads running

are equal to number of partitions, where each partition is

assigned to a different thread. The processing time

(milliseconds) for parsing and encryption/decryption of

different threads running in parallel are depicted on the Y

axis.

It is clear from these figures that the processing time

required for encrypting/decryption XML data without

partitioning for all sizes of file is higher as compared to

dividing XML data in number of parts (2, 4, 8, 16 and 32)

and running individual parts on different cores in parallel.

The encryption/decryption processing time reduces

gradually when the data is partitioned in two, four and

eight parts. However, there is a small change in processing

time when the file is partitioned further (16 and 32 parts).

Fig.6.Parallel processing of encryption with validating

parser on i7

Event Start

Element

Event End

Element

S
c
h

e
m

a
 V

a
li

d
a

t
o

r
M

o
d

u
le

Event End

Encrypted

data

Event Start

Encrypted

data

Decryption module with Internal parser

P
a

r
s
e
r

DeCipher

Calculator

Event Character

Event Character

Internal
Parser

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 1, January 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4111 45

Fig.7. Parallel processing of decryption with validating

parser on i7

The similarly processing time is observed on single core,

dual core and i5. Speedup i.e. time taken by program to

execute is calculated using the following formula to assess

the performance of the parallel model:

Speedup = Time taken by process to execute in serial (one

processor)

 Time taken by process to execute in parallel on

j processors

Comparative chart of speedup on different cores is shown

in Fig. 8. On single core system, there is slight change in

processing time with increasing number of threads, when

we divide SOAP message in aforesaid parts and run them

in parallel. This is because single core can perform single

CPU bound task at a time. So even after increasing the

number of threads for parallel processing, only one thread

at a time is processed on single core as there is no

intervention of I/O bound task.

Fig.8. Comparative chart (Stacked) of speedup on different

Cores

Dual core system works fine with two threads as there are

two physical cores. Running two threads in parallel gives

speedup of 1.6x and utilizes CPU at 98%. Increasing two

more threads i.e 4 threads, increases speedup as 1.76x.

However, after increasing number of threads as 8, 16 and

32, the speedup increases slightly up to 1.79x.

I5 has 2 physical cores and 2 logical cores. Running two

threads in parallel increases speedup by 1.69x and with

four parallel threads it increases up to 1.84x. After

increasing threads up to 32, it reaches up to 1.9x. In i7,

there are 4 physical cores and 4 logical cores. Running two

threads in parallel increases speedup by 1.69x and with

four parallel threads it highly increases up to 2.71x.

Speedup reaches to 3.02x with 8 threads. After increasing

threads up to 32 there is not much improvement.

Maximum speed up 3.09x, is observed with 32 threads

running in parallel on i7.

It is observed that if message is partitioned in multiple of

number of cores available in the hardware, full strength of

data parallelism can be extracted with full CPU utilization.

When a single part is run on i7 (4 physical and 4 logical

cores), CPU utilization is 10-15%. Increasing the number

of parts (4 to 32) with number of threads running, equally,

it increases CPU utilization up to 98%.

It is observed that the size of SOAP message affects the

time for Encryption/decryption processing. If we divide

the file into parts, and run on different cores it improves

the performance (as the processing time required is

reduced), but performance is limited by number of cores

available. Therefore, it is clear from results that to get the

best performance, the number of partitions should be equal

to the number of cores available in the hardware.

Further parallel processing of partitions increases the

overall performance significantly.

IV. CONCLUSION

Security processing on SOAP message is a time

consuming process. The methodology presented in this

paper decreases the time required for SOAP message

security processing. This is due to the combination of

stream based security processing approach and

parallelization. It is concluded that the performance of the

model increases up to optimum level when work load is

uniformly divided among the available cores. Further, it is

concluded that the best performance is obtained when the

number of partitions is equal to the number of cores

resulting in full CPU utilization. This is found only in

case, if the process is totally CPU bound and there is no

intervention of I/O bound task. The new model has

speedup the overall processing time up to 3.09x times

using 4 physical and 4 logical core as compared to serial

processing model. In this way the new parallel stream

based processing model for WS-Security has shown

significant improvement in performance over the existing

serial model.

The results are extremely useful for large XML datasets

and scientific computing that require more CPU cycles

and processing time. Performance improvement is

important to get higher system throughput and smooth

availability of services. This work is also useful for

resource sensitive service environments like mobile web

services where processors have limited powers. Further

research work in the area of web services security can

include issues like parallel stream based signature

processing and security processing of composite web

services.

REFERENCES

[1] N. Gruschka and N. Luttenberger, “Protecting Web Services from

DoS Attacks by SOAP Message Validation,” In Proceedings of the
IFIP International Federation of Information Processing, Vol.201,

pp.171 – 182, 2006.

IJIREEICE ISSN (Online) 2321 – 2004
ISSN (Print) 2321 – 5526

 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING
 Vol. 4, Issue 1, January 2016

Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.4111 46

[2] V. Thomas, “DDoS defense system for web services in a cloud

environment”, http://dx.doi.org/10.1016/j.future.2014.03.003,

Future Generation Computer Systems, Elsevier, pp. 31-39, 2014.
[3] T. Imamura, A. Clark, and H. Maruyama, “A stream-based

implementation of XML Encryption,” In Proceedings of ACM

workshop on XML security, New York, NY, USA, pages 11–17,
2002.

[4] N. Gruschka, M. Jensen, L. Lo Iacono, and N. Luttenberger,

“Server-Side Streaming Processing of WS-Security,” In IEEE
Transactions On Services Computing, Vol. 4, No. 4, 2011.

[5] N. Gruschka, N. Luttenberger, and R. Herkenhöner, “Event-based

SOAP Message Validation for WS-SecurityPolicy-Enriched Web
Services”, Communication Systems Research Group, Department

for Computer Science, Christian-Albrechts-University in Kiel,

Germany,http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1
.129.9933&rep=rep1&type=pdf

[6] N. Gruschka, M. Jensen, and L. Iacono, “A Design Pattern for

Event-Based Processing of Security-Enriched SOAP Messages”, In

the Proceedings of Second International Workshop on Security

Aspects in Grid and Cloud Computing, 2010, pp. 410- 415.

[7] C. Mainka, M. Jensen, L. Lo Iacono, and J. Schwenk, “XSpRES:
Robust and Effective XML Signatures for Web Services,” in 2nd

International Conference on Cloud Computing and Services

Science, 2012.
[8] M. Jensen, C. Meyer, J. Somorovsky, and J¨orgSchwenk, “On the

Effectiveness of XML Schema Validation for Countering XML

Signature Wrapping Attacks” in the International Workshop on
Secured Services in the Cloud Chair for Network and Data

Security, IWSSC, 2011, pp. 7 -13.

[9] M. Priyadharshini, I. Suganya, N. Saravanan “A Security Gateway
for Message exchange in Services by Streaming and Validation,” In

International Journal of Innovative Research in Computer and

Communication Engineering Vol. 1, Issue 3, 2013.
[10] S. Makino, K. Tamura, T. Imamura, and Y. Nakamura.

“Implementation and performance of WS-Security.” IBM Research
Report, Tokyo Research Laboratory, 2007.

[11] H. Liu, S. Pallikara, and F. Geoffrey, “Performance of web service

security,” In Proceedings of 13th Annual Mardi Gras Conference,
2005.

[12] S. Makino, K. Tamura, T. Imamura, and Y. Nakamura,

“Implementation and performance of WS-Security,” In Int. J. Web
Service Res., 1(1), pp. 58–72, 2004.

[13] Y. Wu and Q. Zhang, “A Hybrid Parallel Processing for XML

Parsing and Schema Validation,” In The Markup IEEE
International Conference on Web Services. 2008.

[14] N. Arora, S.Kolhe, S. Tanwani, “A new algorithm for parallel

stream based processing of secured SOAP message”.
(communicated)

[15] Official SAX Homepage, http://www.saxproject.org/

[16] The ApacheTMXML Project: Xerces2 Java Parser,
http://xerces.apache.org/xerces2-j/

[17] M. A. Rahaman, M. Rits and A. Schaad, “An Inline Approach for

Secure SOAP Requests and Early Validation,” In Proceeding of the

Open Web Application Security Project Europe Conference

(OWASP), Leuven, Belgium, 2006.

[18] M. A. Rahaman, M. Rits and A. Schaad, “Towards Secure SOAP
Message Exchange in a SOA”, In Proceeding of the ACM

Workshop on Secure Web Services (SWS), Fairfax, 2007, VA,

USA.
[19] M. A. Rahaman and A. Schaad, “SOAP-Based Secure Conversation

and Collaboration”, In Proceeding of International Conference on

Web Services (ICWS), Los Angeles, CA, USA, 2009.

http://www.saxproject.org/
http://xerces.apache.org/xerces2-j/

